On voit de plus en plus apparaître des ventilateurs sans pale. Ils sont affichés comme plus confortables, plus silencieux et plus sûrs. Une chose est certaine, c’est qu’ils se présentent comme un ventilateur normal mais sans l’hélice et qui pourtant fonctionne parfaitement. Voilà qui est… intrigant !
Leur allure « extra-terrestre » m’a poussé à faire quelques recherches. Pour tout dire, j’ai été un peu déçu, mais il y a tout de même des choses intéressantes à dire… et pas là où l’on croit !
Un ventilateur réellement sans pale ?
Premièrement on l’appelle ventilateur sans pale à cause de l’absence de l’hélice principale. Si on le démonte, on s’aperçoit qu’il contient bien une petite hélice à pales dans le socle. Ce ventilateur brasse l’air, qui est ensuite envoyé vers le haut, dans le cerceau, d’où il sort par une fine fente sur tout le contour :

Il existe donc bien une hélice à pales dans l’appareil, c’est juste qu’on ne la voit pas.
Voilà, c’est tout pour la partie mécanique et le fonctionnement de base. Décevant non ? Heureusement il reste la partie aérodynamique et acoustique !
L’amplification du flux d’air par effet Coandă
La science ne s’arrête pas là pour autant : cette hélice est minuscule et n’explique pas le flux d’air important du ventilateur. Il y a une astuce !
En fait, une fois que l’air sort de la fente sur le contour du cerceau, il entraîne l’air alentour. La première raison à ça est simplement l’entraînement par friction de l’air : l’air ventilé est déjà multiplié par ça.
Une seconde raison vient du profil du « cerceau » : ce dernier est évasé.
L’air sortant de l’ouverture a tendance, par effet Coandă, à rester collé aux bords du cerceau, et donc d’aller en s’évasant lui aussi. Quand l’air part en s’évasant, les molécules de l’air s’écartent les unes des autres — autrement dit, la pression diminue devant le ventilateur. L’air à l’arrière s’engouffre alors dans le cerceau et est projeté vers l’avant lui aussi.
On assiste à un effet multiplicateur : il suffit d’un petit ventilateur dans le socle, brassant un petit peu d’air pour obtenir un grand flux d’air en sortie !
Ce phénomène est puissant, et certains envisagent de créer des avions ou des drones utilisant l’effet Coandã.
Autre intérêt de ce mécanisme : si un ventilateur classique « hache » l’air, les ventilateurs sans pales produisent un flux beaucoup plus régulier. L’air parcourt suffisamment de distance à l’intérieur du socle et du cerceau pour que les turbulences créées par le petit ventilateur soient lissées et le flux d’air en sortie est pratiquement laminaire, et aussi silencieux.
Une astuce pour la réduction du bruit !
L’absence de l’effet de hachage de l’air réduit déjà le bruit, mais ils sont allés plus loin. C’est le mystère du silence de ces appareils qui m’a fait écrire cet article, en fait, car il m’a fait découvrir un truc qui je ne connaissais pas.
La réponse : un ocarina. Vous allez comprendre.
Si vous avez déjà soufflé sur le dessus d’une bouteille, vous savez que cela produit un son. On peut faire varier ce son en faisant varier le niveau d’eau dans la bouteille.
Ce qui se passe est qu’un petit peu d’air entre dans la bouteille. Une légère surpression se produit alors à l’intérieur, et l’air est repoussé vers la sortie. Par inertie, un peu trop d’air sort, et la pression dans la bouteille baisse, ce qui va attirer une nouvelle quantité d’air dans la bouteille et ainsi de suite. Ceci se produit des centaines de fois chaque seconde et l’alternance de surpressions-dépressions produit le son. Ce principe fait fonctionner une flûte ou… un ocarina !
L’ocarina constitue ce que l’on appelle un résonateur de Helmholtz : c’est le volume et la géométrie de la cavité résonnante qui détermine la fréquence du son émis.
Inversement, si une vibration d’air — un son — est émise près d’un résonateur de Helmholtz et si cette vibration a une fréquence identique à celle du résonateur, alors le son émis par le résonateur et le son initial s’annulent !
Ce phénomène permet à ces ventilateurs d’être si silencieux : la forme étudiée de la cavité dans le socle permet d’annuler les bruits du moteur électrique, ou au moins une bonne partie de ceux-ci..
Ce principe est bien connu dans les domaines de l’acoustique et de la réduction du bruit : pots d’échappements de voitures, revêtement des salles de concert, intérieur des réacteurs d’avion… Tous ces éléments sont dimensionnés soit pour annuler des bruits, soit pour les amplifier.
Dans les moteurs à explosion, le principe du résonateur de Helmholtz est également utilisé pour contrôler les flux d’admission du mélange air-essence : ici on cherche à maîtriser et à optimiser l’arrivée du mélange air-essence dans la chambre de combustion pour gagner en performances.
Un ventilateur réellement sans pales serait-il possible ?
À titre de conclusion, vu que le ventilateur sans pale n’est pas exactement sans pale, est-ce qu’un véritable ventilateur sans pales pourrait exister ?
Réponse : en théorie, oui. En pratique… je ne pense pas.
Un ventilateur n’est qu’un appareil pour produire un courant d’air. Généralement c’est fait avec une hélice. Mais on peut faire des courants d’airs sans moteur.
Le vent (celui de dehors) en est un exemple. Comme je l’explique dans mon article sur l’origine du vent, ce dernier existe grâce à des mouvements convectifs dans l’atmosphère. Ces mouvements naissent des différences localisées de température et de densité d’air.
Une flamme de bougie, par exemple, est debout grâce au vent que sa température produit. La flamme est chaude : l’air qui l’entour chauffe, perd en densité et monte. Il est alors remplacé par de l’air plus frais. Globalement le courant d’air est ascendant. Il est possible d’utiliser ce flux d’air, puis de le diriger où l’on veut. Mais ça sera de l’air chaud, donc pas très utile pour se rafraîchir.
Mais il y a pourtant nettement plus futuriste comme solution : celle d’utiliser un propulseur ionique, comme pour les sondes spatiales, mais dans votre salon ! On prend deux anneaux métalliques, sur lesquels on branche 5 000 volts. Les électrons, sous l’effet de cette haute tension, vont être arrachés d’un anneau pour rejoindre l’autre. En se déplaçant, ils vont ioniser des molécules de l’air qui vont également se déplacer et entraîner tout un flux d’air à travers les anneaux, le tout dans un silence absolu.
Le résultat est un courant d’air traversant les anneaux. Ceci me semble être le moyen le plus amusant pour se ventiler, et certains l’ont fait. Le seul inconvénient, c’est que le flux d’air ne sera pas aussi puissant qu’avec un ventilateur conventionnel : le courant d’air produit par le ventilateur ionique reste plutôt faible… à moins d’augmenter les tensions électriques à des centaines de milliers de volt, mais ça devient rapidement impraticable.
Dans les sondes spatiales, ce principe permet de propulser de petites quantités gaz à des vitesses très importantes (jusqu’à 180 000 km/h) et durant plusieurs mois en continu. L’accélération de la sonde est faible, mais sa vitesse finale est extrêmement grande, le tout sans pièces mobiles et avec un système bien plus léger (donc moins cher à envoyer dans l’espace) qu’un propulseur pyrotechnique à réaction classique.