4 commentaires

réacteur nucléaire avec effet Cherenkov

Le bang supersonique

Le son se propage dans l’air à une vitesse d’environ 340 m/s (1 200 km/h) au niveau de la mer. Les vibrations d’une molécule de l’air à une autre se propagent en effet à cette vitesse.

Quand un objet dépasse cette vitesse, le son produit par l’objet s’éloigne de l’endroit où il a été émis à la même vitesse que l’objet. Si cet objet, par exemple un avion, se déplace dans votre direction, vous le verrez s’approcher sans l’entendre : le son ne pouvant arriver plus rapidement que l’avion lui-même.

Parallèlement, le son étant continuellement émis par cet avion, les ondes sonores s’accumulent devant l’avion. Une onde sonore étant une fluctuation périodique et locale de la pression dans l’air, il apparaît juste devant l’avion une surpression suivie d’une dépression. La dépression ne pouvant être plus basse qu’une pression absolue égale à 0, ceci marque la frontière où une onde sonore devient une onde de choc : une variation très importante, brutale et violente dans la pression de l’air.

Un avion qui dépasse la vitesse du son et qui maintient une vitesse supersonique provoque donc une onde de choc. Si l’avion n’est pas trop près, cette onde de choc s’atténue et redevient une onde sonore caractéristique appelée « bang supersonique ». Et c’est elle que l’on entend quand un avion « dépasse le mur du son ».

Un autre effet de cette brusque variation de pression locale dans l’air, c’est la formation de micro-gouttelettes d’humidité dans l’air, faisant apparaître un sorte de bouclier de vapeur, appelé cône de Mach, sur un avion :

un avion avec le cône de Mach
Le cône de mach sur un avion en vol supersonic (image)

Bon, tout ceci concerne le son dans l’air et les objets se déplaçant plus rapidement que le son ne le fait dans l’air.

Avec la lumière : un flash superluminique ?

La vitesse de la lumière dans le vide est la limite pour une vitesse de déplacement.

Un objet, comme un vaisseau spatial, ne peut atteindre ou franchir cette vitesse. Il s’agit d’une vitesse absolue : la lumière se déplace toujours à la vitesse de la lumière. Donc même par rapport à un vaisseau spatial super-rapide, la lumière s’en éloigne à la vitesse de la lumière du point de vue du vaisseau (vu du sol, la lumière sera vu comme se déplaçant à la vitesse de la lumière aussi, et non le double de la vitesse de la lumière — c’est ce qu’on appelle la relativité, où ce n’est plus les vitesses qui s’additionnent, mais la structure de l’espace et du temps qui se déforment, mais ça sera pour un autre article).

Ce qu’il faut voir ici c’est que la vitesse de la lumière est infranchissable dans le vide.

Dans le vide.

Car quand un rayon lumineux se propage dans un autre milieu, par exemple dans l’eau ou le verre, la lumière est ralentie. Le rapport de ralentissement dépend du milieu qui se caractérise alors par un indice, dit indice de réfraction $n$ de la lumière qui traduit ce ralentissement.
Dans l’eau, le ralentissement est de l’ordre de 25 %. Dans le verre, autour de 33 %. Le ralentissement atteint même 60 % dans le diamant, où il est responsable de l’éclat si particulier de cette pierre précieuse.

Notez bien cependant : c’est la lumière qui ralentit dans ces milieux.
Si on envoie un faisceau d’électrons, de protons ou de toute autre particule sur du verre, l’indice de réfraction n’est pas appliqué et la particule peut aller à des vitesses proches de la vitesse de la lumière dans le vide.

On peut alors se retrouver dans une configuration où, dans le milieu (l’eau, le verre…), la lumière va moins vite que la particule… qui va moins vite que la vitesse de la lumière dans le vide :

$$\mathcal{V}_{\text{lumiere}_{eau}} \lt \mathcal{V}_{\text{particule}_{eau}} \lt \mathcal{V}_{\text{lumiere}_{vide}} $$

Maintenant, si la particule est chargée, comme c’est le cas d’un électron, d’un proton ou même d’un muon, alors le passage de la particule provoque une polarisation des couches électroniques des atomes du milieu transparent en question, de laquelle il résulte une émission de lumière par ces atomes.

Dans le cas où la particule se déplace dans le milieu plus vite que ne le fait la lumière, les interférences produites par cette lumière sont constructives et visibles (alors qu’elles sont destructives et invisibles quand la particule se déplace moins rapidement que la lumière).

La lumière que l’on peut alors observer lors d’un tel phénomène porte le nom d’émission de Vavilov-Cerenkov. On parle aussi de l’effet Vavilov-Cherenkov, ou plus simplement Effet Cherenkov.

Tout comme il résulte d’un avion supersonique la formation d’un cône de Mach, il résulte également ici l’apparition d’un cône lumineux autour de la particule :

Schématisation du fonctionnement de l’effet Cherenkov (source)

Et en vrai, on le voit par exemple dans les piscines des centrales nucléaires, où les particules émises par le combustible nucléaire traverse l’eau à une vitesse supraluminique (image d’en-tête).

Plus surprenant, l’effet Cherenkov peut également se produire dans les yeux (remplies d’eau), quand une particule cosmique la traverse. La personne observe alors un phosphène, une apparition d’un effet lumineux.
Cet effet a été rapporté par les astronautes, qui étaient alors soumis aux particules cosmiques voyageant à très haute vitesse.

image d’en-tête de Argonne National Laboratory

4 commentaires

gravatar
Juju wrote:

Est-ce qu'un bateau se déplaçant à la surface de l'eau, plus vite que la vitesse de déplacement de l'onde, peut provoquer une sorte de "BANG" ?

gravatar
Le Hollandais Volant wrote:

@Juju : bien vu !

Quand le bateau bouge, il fait des vagues oui. S’il rattrape le vagues, il se forme un bourrelet sur la proue (le devant du bateau). Ce bourrelet correspond bien à l’accumulation des vagues successives.

Ça ne forme pas un « bang » ni même une onde de choc, mais ça forme plutôt une vague plus grosse (le bourrelet) et des turbulences dans l’eau. C’est n’est pas un « bang » sonore, mais ça peut-être vu comme son équivalent : le phénomène est mathématiquement le même (on rattrape une onde, une vague).

gravatar
Bost wrote:

D'habitude satisfait (voir perdu) des précisions dans tes articles, je suis un peu déçu concernant les précisions sur le Mach. Il est d'environ 340m/s, oui, mais en norme ISA (niveau de la mer, 15°C et à 1013,25 hPa), vu qu'ici le modèle est bien un avion, en altitude, cette vitesse du son chute, et il est donc possible de passer le Mach à plus basse vitesse.
Pour aller plus loin à propos du "bang" supersonique, il serait plus judicieux de parler de double "bang" même si plus difficilement audible.
Et dernière remarque, la condensation est le passage de l'état gazeux à l'état solide !
Je sais que je pinaille mais d'habitude la justesse et les précisions sont présentent.

gravatar
Le Hollandais Volant wrote:

@Bost : le double bang je n’en ai pas parlé de façon volontaire. Ça n’aurait pas eu d’intérêt ici^^.
Pour le vitesse du son, c’est vrai. Elle varie beaucoup avec les conditions de pression et de température et même l’humidité (tout ce qui joue sur sa densité, en fait). Je vais ajouter la précision.

Très juste pour la condensation !


Votre commentaire sera visible après validation par le webmaster.