une route
Vous ne vous êtes jamais posé la question sur l’origine du tracé d’une route ou d’un chemin de fer ?

Le tracé d’une route est loin d’être une chose simple : si dans certains cas on se contente de routes parfaitement droites (c’est le cas si le relief le permet, comme c’est très souvent le cas en Hollande ou en Belgique), il faut généralement éviter les collines, vallées ou forêts. Pour des questions de coûts, on réduira également le nombre de ponts et tunnels en préférant contourner ces obstacles avec des virages.

Ces virages ne peuvent pas prendre n’importe quelle forme : cela serait incommodant pour les passagers, et même pour le fret dans un train de marchandise. Il existe pourtant une courbe « idéale » qui minimise ces désagréments. Voyons comment l’on peut retrouver une telle courbe.

Dans ce qui suit on va prendre le cas précis de tracé d’une courbe de raccordement entre deux portions de lignes droite :

relier deux routes entre elles
Comment faut il relier ces deux routes ?

  • avec une ligne droite ?
  • avec un arc de cercle ?
  • avec une autre courbe ?

La ligne droite est définitivement exclue : si le but est de garder une circulation fluide et uniforme, on évite les routes anguleuses. Le changement de trajectoire serait trop brusque, nécessiterait un ralentissement, et provoquerait des bouchons et des accidents.

La route en arc de cercle semble bien tentante ici, pourtant, cette solution pose problème. La transition d’une route droite à un arc de cercle ferait passer d’un coup d’une route avec un rayon de courbure nul à une route avec un rayon de courbure importante. Or, qui dit rayon de courbure, dit force centrifuge : l’apparition de la force centrifuge sera soudaine et inconfortable, voire dangereuse.
De plus, pour le conducteur d’une voiture, pour passer d’une ligne droite à une route circulaire, il faut passer le volant d’un angle nul à un angle non nul de façon immédiate. Il en résulte un besoin de tourner d’un coup le volant lors du passage de la ligne droite à l’arc de cercle. Ceci n’est pas pratique.

La solution ?

La solution est d’utiliser une courbe dont le rayon évolue progressivement. La force centrifuge sera alors augmentée progressivement également, et le volant tourné lentement (pas subitement). En pratique, en roulant à allure fixe, il faudra tourner le volant avec une vitesse constante, modifiant ainsi doucement le rayon de courbure suivi par le véhicule.

Une courbe dont le rayon de courbure varie de fonction linéaire avec la position sur la courbe, se nomme la spirale d’Euler, également connue sous le nom de spirale de Cornu, ou Clothoïde.

La ligne droite est considérée comme un cercle infiniment grand, donc un rayon de courbure infini. Pour changer de direction, il faut donc diminuer ce rayon de courbure de façon progressive. Le tracé d’une telle route sera faiblement courbé au début, et se courbera progressivement de plus en en plus :

Animation de la création d’une spirale d’Euler (source)

Bien-sûr, dans le cas d’une route, on ne pratique que les premiers pas de cette spirale, jamais la spirale entière. La route doit également présenter une telle courbure dans les deux sens de circulation.

Ce que l’on fait, ce sont deux spirales d’Euler se rejoignant sur un cercle :

découpage géométrique d’une trajectoire d’une route en virage à 180°
(source)

Dans ces conditions, le volant de la voiture tourne progressivement et linéairement dans le sens du virage, puis s’arrête de tourner — on est alors sur une trajectoire purement circulaire — puis reprendre la rotation dans l’autre sens, à la même vitesse jusqu’à être enfin revenu au point de repos, dans la ligne droite.

La spirale d’Euler ne représente qu’une petite partie de la courbure, mais elle est des plus importantes car elle permet de transiter de façon progressive entre les sections droites.

Sur un chemin de fer, c’est grâce à la spirale d’Euler que le TGV peut prendre des virages à 300 km/h sans que vous vous en rendiez compte. Ici, une force appliquée de façon progressive évite également une usure prématurée à la fois des rails et des roues.

Pour finir à propos des routes, sachez que la spirale d’Euler n’est pas la seule utilisée. Dans le cas de virages faiblement incurvés, les courbes elliptiques ou circulaires et les courbes de Bézier remplacent généralement la spirale d’Euler.
Néanmoins, un virage tracé selon la spirale d’Euler est celui qui — mathématiquement — offre le meilleur confort et la plus grande facilité à prendre.

Pour conclure sur la spirale d’Euler, sachez que la même propriété — le rayon de courbure croissant de façon constante, donc linéairement — a d’autres applications. On les retrouve dans le design des montagnes russes (où il s’agit d’appliquer une accélération progressive. Dans la sidérurgie, la distorsion de l’acier doit se faire de façon progressive pour conserver sa performance mécanique. La spirale d’Euler plus ou moins complète est aussi la forme d’un ressort spirale, utilisé par exemple en horlogerie.

Enfin, les spirales d’Euler interviennent dans l’exploration spatiale : lorsqu’un satellites doit passer d’une orbite initiale à une orbite située à une altitude différente, elle emprunte une orbite de transition qui prend la forme d’une portion de la spirale d’Euler.

image de European Roads

6 commentaires

gravatar
TD écrit :
C’est un très bon article mais j’aurais voulu avoir une explication de la construction mathématique de la spirale. Je connaissais déjà cette spirale (sous le nom de clothoïde) depuis quelques années.

Lorsqu’un satellite modifie son orbite, il ne suit jamais une spirale d’Euler. La théorie permet uniquement l’existence de trajectoires coniques (cercles, ellipses, paraboles et hyperboles). Plus précisément, lorsqu’un satellite change d’altitude (étant entendu qu’il reste en orbite autour du même corps), la trajectoire est toujours elliptique. Si tu as raison, je veux une démonstration mathématique.

Je demande à voir pour le formage des pièces d’acier. D’une part la déformation définitive de l’acier ne peut en aucun cas conduire à une dégradation des performances mécaniques tant qu’il n’y a aucun endommagement de la microstructure (ce qui est évité pour fabriquer quoi que ce soit, et l’acier est peu sensible à l’endommagement), et d’autre part déformer définitivement une pièce en acier n’affecte en rien sa raideur s’il n’y a pas d’endommagement. Dès l’apparition d’endommagement, la raideur et la résistance diminuent. N’importe quel cours de mécanique non linéaire permet de s’en assurer.
gravatar
Le Hollandais Volant écrit :
La construction c’est sa définition : la courbure est proportionnelle à son abscisse curviligne (wiki). Plus on avance dans le tracé de la courbe, plus la courbure est importante.
gravatar
Captain Artichaut écrit :
Je connais un autre types de courbes, c'est les courbes en développante de cercle, utilisé pour dessiner les dents des engrenages.

Sinon, c'est un excellent article.
gravatar
Jacques Pyrat écrit :
Et concrètement, comme on fait sur le terrain pour réaliser le tracé de la route selon la courbe d'Euler ?
gravatar
Le Hollandais Volant écrit :
@Jacques Pyrat : comme le montre l’animation vidéo.
Quoi qu’aujourd’hui j’imagine que le tracé par GPS doit être possible.

Sinon on trace la courbe sur une carte ou un plan et on la reproduit en vrai.
gravatar
greg écrit :
Dans un autre domaine, les loopings des montagnes russes utilisent aussi des courbes dont le rayon varie. En plus de permettre une augmentation progressive de la force centrifuge en entrée de looping, c'est aussi nécessaire pour limiter le nombre de g imposé aux passagers du grand 8.

Un grand rayon à la base du looping permet de compenser la vitesse élevée pour limiter la force centrifuge à un niveau supportable pour le corps humain. D'autant plus qu'à la base du looping, le poids s'additionne à la force centrifuge.

Et au sommet, au moment où le train atteint sa vitesse la plus faible, il faut un rayon assez petit pour que la force centrifuge soit assez grande pour compenser le poids des passagers qui ont la tête en bas à ce moment là.


Votre commentaire sera visible après validation par le webmaster.