Une feuille de papier froissée.
La feuille de papier A4 est quelque chose de banal. On en voit tous les jours à tel point que ce format semble naturel et personne ne viendrait questionner son origine. Et c’est une erreur !
Le format A4 ne sort pas de nulle part : ses dimensions sont très précises et répondent à un but précis.

29,7 ÷ 21 = 1,414

Si vous êtes comme moi, peut-être avez-vous déjà, par curiosité, calculé le rapport $\frac{29,7}{21}$. Le résultat n’est pas le nombre d’or, mais plutôt quelque chose comme $1,414$.
À partir de ça, soit vous voyez tout de suite à quoi ça correspond, soit pas du tout : 1,414, c’est la valeur approchée de racine carrée de 2 : $\sqrt{2}$.

La racine carrée d’un nombre, c’est la valeur qui multipliée par elle-même donne ce nombre. Inversement, prendre un nombre et le diviser par sa racine carrée donne de nouveau la racine carrée en résultat.

Quand on plie une feuille en deux, le grand côté est réduit de moitié (dans l’équation ci-dessus, le « 2 » devient « 1 »), et le petit côté devient le grand côté (la racine de 2 passe du dénominateur au numérateur).

$$\frac{2}{\sqrt{2}}=\frac{\sqrt{2}}{1}$$

Le rapport avec le format de papier ?

Et bien quand on plie une feuille dont le rapport des longueurs des côtés est $\sqrt{2}$ en deux, alors le rapport des côtés des longueurs de la feuille pliée en deux est de nouveau $\sqrt{2}$, et ainsi de suite.
Contrairement à une feuille carrée, ou une feuille dont le rapport est le nombre d’or par exemple, le rapport des côtés d’une feuille A4, A5, A6… est toujours le même : $\sqrt{2}$ !

C’est très pratique !

Cela permet par exemple de faire tenir deux pages A4 dans une page A3, ou encore deux pages A5 dans une page A4. Quand on fait des réductions ou des agrandissements d’images, ça permet de conserver les proportions sur toute la page, sans zone blanche.

Un format dont le facteur de forme est $\sqrt{2}$ est le seul à avoir cette particularité. Avec un tel format, on peut plier la page autant de fois que l’on souhaite, le format ne changera pas :

Les dimensions du format A.
Les dimensions du format A (source)

Cette propriété aurait déjà été connue de Léonard de Vinci.

Mais pourquoi 21×29,7 ?

On comprend l’intérêt mathématique d’un ratio de $\sqrt{2}$ , mais ça n’explique pas pourquoi on a pris 21 et 29,7 cm pour une feuille. On aurait pu prendre 24 et 33,9, le rapport serait toujours 1,414. En fait, le format A4 est la moitié du format A3. Qui est lui-même une moitié de page A2. Le A2 est la moitié du format A1, et ce dernier est un demi A0. Le vrai format de base, c’est A0.

Les dimensions d’une page A0 sont 84,1 × 118,9 cm. Si vous calculez l’aire d’une telle page vous obtiendrez… 1 m² !

Le format « A » est basé sur ça : on a pris une page dont l’aire fait exactement 1 m² et dont les proportions sont $\sqrt{2}$. On a ensuite plié en deux jusqu’à obtenir une taille pratique au quotidien : c’est le format A4.

L’usage d’une base « A0 » qui fait exactement 1 m² provient, elle, de la révolution française, en même temps que le système métrique : c’est le mathématicien, physicien et homme politique Lazare Carnot qui a proposé, en 1786, l’usage d’un format pratique et d’une dimension qui permette de facilement calculer la surface de papier utilisée… et donc sa taxation !

L’idée, née de la révolution Française, fit son chemin jusqu’en Allemagne, où l’organisme de standardisation allemand (le DIN) proposa de l’utiliser comme format standard dès 1922. Un très grand nombre de pays suivirent rapidement cette idée.
L’ISO adopta ensuite ce format dans l’ISO 216 et en 1975, l’ONU l’adopta à son tour.

Aujourd’hui, l’exception des pays de l’Amérique du nord et de quelques autres pays, il est utilisé dans pratiquement tous les pays du monde.

B4 et C4 ?

En plus du format A4, il existe aussi le format « B » et « C ». Ces derniers ont également le même facteur de forme de $\sqrt{2}$, mais ils sont juste un brin plus grand. Le format B est obtenue en prenant une feuille B0 dont le petit côté fait 1 mètre et donc le grand côté 1,414 mètre.

Le format C est lui exactement entre les deux.

De même, le format est B4 et C4 sont obtenus en pliant les feuilles B0 et C0 en deux quatre fois de suite.

Conséquences pratiques

On a vu au dessus que ces formats ont la particularité d’avoir des proportions maintenues si l’on plie la page en deux. Mais ce n’est pas tout.

Si l’on prend le grammage du papier le plus courant, 80 g / m², alors ça veut dire qu’une page A0 pèse exactement 80 grammes.

Si l’on descend jusqu’au format A4, on trouve que la feuille A4 pèse exactement 5 grammes. À la poste, on peut donc envoyer 3 pages avec le tarif de base dans une petite enveloppe (il ne faut pas oublier le poids de l’enveloppe). C’est pratique et c’est facile à se rappeler.

De même, si vous avez besoin de savoir, une ramette de papier 80 g/m² pèse 2 500 grammes.

Références

Voir aussi :

  • Paper sizes, un site qui recense les différents formats de papier à travers le monde et permet de les comparer visuellement (merci Alexis pour ce lien !).

(Cet article a initialement été publié sur Le Hollandais Volant en 2011. J’ai décidé de mettre à jour et de le déplacer ici)

PS : Par un simple hasard, cet article sort peu après la vidéo de Lanterne Cosmique sur le même sujet : Pourquoi les feuilles font-elles 210 × 297 mm ?. Évidemment, comme il n’y a pas 36 façons d’expliquer une même chose, le plan de l’article ressemble également au plan de sa vidéo.
L’article avait déjà été rédigée (comme j’ai dit, c’est une réécriture d’un ancien article sur mon autre blog), donc j’ai choisi de le publier quand-même à la date prévue. La semaine prochaine vous aurez un autre article sur le papier :).

image d’en-tête de FullPixel Photography

6 commentaires

gravatar
mathias poujol-rost wrote:

Très intéressant :D

gravatar
John Doe wrote:

Mais qui a eu cette idée folle ?

gravatar
Le Hollandais Volant wrote:

@John Doe : Il semble que le format avec un ratio égale à $\sqrt{2}$ soit déjà connu par Leonard de Vinci.

Les dimensions 210×297 datent d’après le système métrique car ils impliquent de commencer par une page dont la surface fait exactement 1 m².
Le système métrique est apparu durant la révolution française, afin de se débarrasser des unités historiques et surtout impériales britanniques. C’est à cet époque que le format A est proposé, d’abord pour pouvoir calculer des taxes sur la surface du papier.

L’organisme de standardisation allemand (le DIN) propose ensuite le format A en 1922 et sera ensuite repris par de nombreux pays puis par l’ISO. L’ONU l’adopta en 1975. À l’exception des pays de l’Amérique du nord et de quelques autres pays, il est utilisé dans pratiquement tous les pays du monde.

Je vais ajouter tout ça à l’article !

gravatar
blux wrote:

On a ensuite plié en deux jusqu’à obtenir une taille pratique au quotidien : c’est le format A4.
Et pourquoi A4, A5, A3... ?
C'est juste le nombre de pliages de la feuille A0 :

- A1 plie A0 une fois
- A2 plie A0 deux fois
- A3 plie A0 trois fois
- ad infinitum... ou presque puisque la limite physique semble être de 7 pour un papier ordinaire...

gravatar
François Paganel wrote:

Pour la petite histoire, et cela doit pouvoir se retrouver dans l'historique, l'article de la Wikipédia "Sciences et techniques islamiques" attribuait l'origine de ce format à "l'âge d'or" es sciences là-bas, soit avant le douzième siècle, alors qu'en effet le mètre ne sera défini qu'au 18ème.

Il s'ensuivit une bataille aussi homérique que cocasse, qui ne prit fin que lorsqu'un des protagonistes menaça d'envoyer des versions imprimées de l'article à toutes les revues de vulgarisation scientifique de Paris pour montrer la "fiabilité" de la Wik. La jeune Wikipédia oeuvrant dur pour se faire une notoriété ne pouvait pas se permettre publiquement une humiliation pareille et la partie litigieuses fut retirée.

gravatar
Leandri wrote:

chose amusante: si vous calculer la surface du forma A0 en partant du format A4, on n'obtient pas 1m²


Votre commentaire sera visible après validation par le webmaster.